Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 47, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413593

RESUMO

MVA-based monovalent eastern equine encephalitis virus (MVA-BN-EEEV) and multivalent western, eastern, and Venezuelan equine encephalitis virus (MVA-BN-WEV) vaccines were evaluated in the cynomolgus macaque aerosol model of EEEV infection. Macaques vaccinated with two doses of 5 × 108 infectious units of the MVA-BN-EEEV or MVA-BN-WEV vaccine by the intramuscular route rapidly developed robust levels of neutralizing antibodies to EEEV that persisted at high levels until challenge at day 84 via small particle aerosol delivery with a target inhaled dose of 107 PFU of EEEV FL93-939. Robust protection was observed, with 7/8 animals receiving MVA-BN-EEEV and 100% (8/8) animals receiving MVA-BN-WEV surviving while only 2/8 mock vaccinated controls survived lethal challenge. Complete protection from viremia was afforded by both vaccines, with near complete protection from vRNA loads in tissues and any pathologic evidence of central nervous system damage. Overall, the results indicate both vaccines are effective in eliciting an immune response that is consistent with protection from aerosolized EEEV-induced disease.

2.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014096

RESUMO

Persistent and uncontrolled SARS-CoV-2 replication in immunocompromised individuals has been observed and may be a contributing source of novel viral variants that continue to drive the pandemic. Importantly, the effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. Here we conducted a pilot study wherein two pigtail macaques (PTM) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and monitored for six weeks for clinical disease, viral replication, and viral evolution, and compared to our previously published cohort of SIV-naïve PTM infected with SARS-CoV-2. At the time of SARS-CoV-2 infection, one PTM had minimal to no detectable CD4+ T cells in gut, blood, or bronchoalveolar lavage (BAL), while the other PTM harbored a small population of CD4+ T cells in all compartments. Clinical signs were not observed in either PTM; however, the more immunocompromised PTM exhibited a progressive increase in pulmonary infiltrating monocytes throughout SARS-CoV-2 infection. Single-cell RNA sequencing (scRNAseq) of the infiltrating monocytes revealed a less activated/inert phenotype. Neither SIV-infected PTM mounted detectable anti-SARS-CoV-2 T cell responses in blood or BAL, nor anti-SARS-CoV-2 neutralizing antibodies. Interestingly, despite the diminished cellular and humoral immune responses, SARS-CoV-2 viral kinetics and evolution were indistinguishable from SIV-naïve PTM in all sampled mucosal sites (nasal, oral, and rectal), with clearance of virus by 3-4 weeks post infection. SIV-induced immunodeficiency significantly impacted immune responses to SARS-CoV-2 but did not alter disease progression, viral kinetics or evolution in the PTM model. SIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA